Some remarks on mean-values of subharmonic functions
نویسندگان
چکیده
منابع مشابه
On the mean value property of superharmonic and subharmonic functions
Recall that a function u is harmonic (superharmonic, subharmonic) in an open set U ⊂ Rn (n ≥ 1) if u ∈ C2(U) and Δu = 0 (Δu ≤ 0,Δu ≥ 0) on U . Denote by H(U) the space of harmonic functions in U and SH(U) (sH(U)) the subset of C2(U) consisting of superharmonic (subharmonic) functions in U . If A ⊂ Rn is Lebesgue measurable, L1(A) denotes the space of Lebesgue integrable functions on A and |A| d...
متن کاملRemarks on special values of L-functions
This article does not represent precisely a talk given at the symposium, but is complementary to [DenS]. Its purpose is to explain a setting in which the various conjectures on special values of L-functions admit a unified formulation. At critical points, Deligne’s conjecture [Del2] relates the value of an L-function to a certain period, and at non-critical points, the conjectures of Beilinson ...
متن کاملOn Some Intermediate Mean Values
Slavko Simic Mathematical Institute SANU, Kneza Mihaila 36, 11000 Belgrade, Serbia Correspondence should be addressed to Slavko Simic; [email protected] Received 25 June 2012; Revised 9 December 2012; Accepted 16 December 2012 Academic Editor: Mowaffaq Hajja Copyright © 2013 Slavko Simic.This is an open access article distributed under the Creative Commons Attribution License, which p...
متن کاملSome Remarks on Approximation of Plurisubharmonic Functions
Let Ω be a domain in Cn. An upper semicontinuous function u : Ω → [−∞,∞) is said to be plurisubharmonic if the restriction of u to each complex line is subharmonic (we allow the function identically −∞ to be plurisubharmonic). We say that u is strictly plurisubharmonic if for every z0 ∈ Ω there is a neigbourhood U of z0 and λ > 0 such that u(z) − λ|z|2 is plurisubharmonic on U . We write PSH(Ω)...
متن کاملMean values of multiplicative functions
Let f(n) be a totally multiplicative function such that |f(n)| ≤ 1 for all n, and let F (s) = ∑∞ n=1 f(n)n−s be the associated Dirichlet series. A variant of Halász’s method is developed, by means of which estimates for ∑N n=1 f(n)/n are obtained in terms of the size of |F (s)| for s near 1 with 1. The result obtained has a number of consequences, particularly concerning the zeros of the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tohoku Mathematical Journal
سال: 1986
ISSN: 0040-8735
DOI: 10.2748/tmj/1178228490